NONCHAIR CONFORMATION IN 2,4,7-TRIOXA-3-PHOSPHA-3-THIONO-BICYCLO [4.4.0.] DECANE SERIES

Denis BOUCHU and Jacques **DREIJX**

(Université Lyon I, Laboratoire de Synthèse et de Chimie Organique Appliquée, Bât. 308, 43, Bd du II Novembre 1918, 69622 Villeurbanne Cédex, France.)

Summary : The NMR analysis of the less stable isomer of the 2,4,7-triox~~-3-chloro-3_phcspha_ 3-thiono-bicyclo(<,4.0)decane ia shows that this compound exists predominantly in a twist-boat conformation.

It is now well documented¹ that six membered phosphorus heterocycles exist predominantly in chair conformation especially in dioxaphosphorinane series, electronegative substituents on phosphorus adapting en *axial* orientation. Large values (20 to 30 Hz) of trans $\mathrm{^{3}J_{POCH}}$ and low values (1 to 5 Hz) of gauche $\mathrm{^{3}J_{POCH}}$ are generally typical of such conformation. Intermediate values have mostly been interpreted by the existence of a chair \rightleftharpoons chair equilibrium 2 . However evidence has been reported ^{2b ,3 of nonchair conformations in dioxaphosphorinanes in which the phosphorus substituent is forced into a thermodynamically disfavored *orientation.*

In connection with stereochemical studies of nucleophilic substitution at phosphorus, this paper reports results of NMR spectral analysis of one pair of diastereoisomeric dioxaphosphorinanes in the 2,4,7-trioxa-3-phospha-3-thiono-bicyclo $[4.4.0]$ decane series bearing a chlorine atom on phosphorus.

the number of nonchair conformations(figure 1) , it is interesting to study the prefered conformations when such a strong electronegative substituent is forced into a disfavored position. The normal chair conformation for the dioxaphosphorinane cycle of <u>Ia</u> (figure I) The trans cycle jonction preventing any chair \Rightarrow chair equilibrium and limiting would place the chlorine atom equatorial and the P=S bond axial.

Configurational assignments have been made on $^{\rm 31}$ P, $^{\rm 1}$ H NMR spectra basis (table I) and by means of mass spectrometry 5 . It can be stated, according to results given in other series ^{1a}, that 31_P resonance of compounds with equatorial P=S bond is shifted upfield relative to compounds having axial P=S bond in this series 4 (excepted when the nonchalcogen is -N(CH₃)₂ 5,6). But the main criterions retained are the δ , 3 J_{HH} and 3 J_{POCH} obtained from the 'H NMR spectral analysis.

Table I

			\mathbf{Y} H $\begin{bmatrix} a \\ 1 \end{bmatrix}$ H $_5$ H $_5$ H $_6$ J ₁₋₆ J ₅₋₅ , J $_{5-6}$ J ₅ \cdot -6 J _{1-P} J ₅ \cdot -P J ₅ \cdot -P 31 $\begin{bmatrix} c \\ p \end{bmatrix}$					
1a			C1 4.40 4.26 4.56 3.87 9.5 10.6 9.1 6.8 1.9 21.2 10.6 63.9					
1 _b	C1		$\vert 4.29 \vert 4.24 \vert 4.37 \vert 3.58 \vert 9.7 \vert 10.7 \vert 10.7 \vert 5.0 \vert 6$ (b) $\vert 4.6 \vert 29.0 \vert 59.2$					

(a) The 1 H NMR spectra were obtained from isomerically pure compounds in CDCl₃ solutions on a CAMECA spectrometer at 250 MHz. 6 are positive in p.p.m. downfield from internal TMS. NMR parameters are resulting of a first order analysis. Coupling constants (Herz) are absolute values.

(b) The poorly resolved multiplet corresponding to H_1 is obscured by the H_5 signal, so we were unable to measure this coupling constant.

(c) The 31^p NMR spectrawere recorded in CDC1₃ on a Varian XL 100 spectrometer. δ are positive in p.p.m. downfield relative to H_3PO_4 (85%) as external standard (1a $\delta^{31}P = 59p.p.m.$ $1b \delta^{31}P = 55 p.p.m.,$ neat)⁵.

Figure 1

The 'H NMR parameters for <u>1b</u> (especially $J_{5-6} = 10.7$ Hz, $J_{5,1-6} = 5.0$ Hz, $3_{J_{5-}p}$ = 4.6 Hz and $3_{J_{5,1}-p}$ = 29.0 Hz) are consistent with a chair form where the chlorine atom is axially oriented. It is noteworthy that δH_{5} , is larger than δH_{5} due to a greater deshielding effect of the equatorial P=S bond relative to the effect of chlorine. The coupling constants values for $1a$ (especially 3 J₅₋₆ = 9.1 Hz, 3 J <u>ia</u> (especially $J_{5-6} = 9.1$ Hz, $J_{5,1} = 6.8$ Hz,

 $J_{5-P} = 21.2$ Hz and $J_{5^+ - P} = 10.6$ Hz) are inconsistent with a single chair form, but could be explained by an equilibrium between chair, boat 36⁷, boat 14, and twist-boat conformations in which the chlorine atom recovers a much favored axial orientation. Low temperature

 31 P NMR experiment from 261 to 131 $^{\circ}$ K did not show any evidence supporting this equilibrium. However ¹³C NMR spectra (Table II) between 293 and 195°K show little modifications, especially for $3J_{C_0e^-}$, $3J_{C_0e^-}$ and $2J_{C_0e^-}$. It is likely that la is a rapidly equilibrating mixture of conformations.

Table II

 13 C NMR spectral parameters 8 of <u>1a</u> in CD₃COCU₃ at 293 and 195°K -

$T^{\circ}K$				$C 8^{(a)} C 9 C 10 C 11 C 5 C 6 \left C 9 - P^{(b)} \right ^{3} J_{C_{10}-P} \left ^{3} J_{C_{6}-P} \right ^{2} J_{C_{1}-P} \left ^{2} J_{C_{5}-P} \right ^{2}$		
293						
195						

(a) 6 are positive in p.p.m. downfield relative to internal TMS.

(b) J are absolute values in Hz $(2 0.3 Hz)$.

It should be noted that δH_{5} , is still greater than δH_{5} indicating that H_{5} is not deshielded by the P=S bond. On the contrary, H_5 , is now submitted to the deshielding effect of the chlorine atom. Additionally the great downfield shift of H_6 (0.4 p.p.m. relative to other compounds predominantly existing in a chair form in the same series) eliminates the chair conformation as significant contributor to the overall conformation of $1a$.

Boat 36 conformation may be excluded on the basis of the following arguments : the values of 3_{5-6} and $3_{5,1-6}$ relative to those of 1b are indicative of $H_6C_6C_5H_5$ and $H_6C_6C_5H_6$, dihedral angles changes that are unexpected in this boat form ; Δ $\delta H_1(a-b) = 0.11$ $p.p.m. > \Delta \delta H_5$ (a-b) = 0.02 p.p.m. shows some distorsion of the dioxaphosphorinane ring which permits a greater deshielding of H₁; furthermore $3_{J_{1-p}}$ should increase 9 from chair to boat 36 conformation $(H_1C_1O_2P$ dihedral angle changes from \approx 60° to 120°). This result is not surprising because of the expected great syn axial $1,4$ steric interaction between H_6 and chlorine atoms in the boat 36 conformation.

The $J_{H\pm H}$ and $J_{H\pm P}$ values do not allow us to conclude firmly between the boatl and the twist-boat forms. However, the J_{i-p} value (smaller than those in other 2-chloro-2thiono-1,3,2-dioxaphosphorinanes ¹⁹) , gives some argument for an increase of the $H_1C_1O_2P$ dihedral angle to = 90°, and is in favor of the twist-boat conformation. Indeed this $H_1C_1O_2P$ dihedral angle is not altered from chair to boat 14 conformation.

Finally compound *ia* seems to be preferentially in a twist-boat conformation in which the chlorine atom occupies a pseudo-axial orientation although we cannot rule out some additional small contributions from other conformations.

This result may have some importance in stereochemical studies for the evaluation of stereoelectronic effects 11 in nucleophilic substitution of 3-halogeno-1,3,2-dioxaphosphorinanes in this series.

REFERENCES

